Swing door drive mechanism

FD 10

Mounting and operating instructions

Original

TABLE OF CONTENTS

1 GENERAL REMARKS 4
1.1 Target group 4
1.2 Adresses 4
1.3 Auxiliary tools and service performances 5
2 SAFETY 6
2.1 Appropriate use 6
2.2 Safety notices 6
2.3 Safety regulations 6
2.3.1 Principles 6
2.3.2 Service 8
2.3.3 Safety devices 8
2.3.4 Malfunctions 8
2.3.5 Accessories/Spare parts 8
3 PRODUCT DESCRIPTION 9
3.1 General remarks 9
3.2 Standard application 10
3.3 Automatic closing sequence control 11
3.4 Rating plate 11
3.5 Technical data 12
3.6 Application limits without safety elements according to EN 16005 12
4 MOUNTING 13
4.1 General 13
4.2 Mounting versions 13
4.3 Drive mechanism 15
4.4 Normal rods RS pushing function / Lintel mounting 17
4.5 Normal rods RS pushing function / Leaf mounting 19
4.6 Sliding rods RG pushing function / Lintel mounting 21
4.7 Sliding rods RG pushing function / Leaf mounting 23
4.8 Sliding rods RG pulling function / Lintel mounting 25
4.9 Sliding rods RG pulling function / Leaf mounting 27
4.10 Adjusting the pre-stressing of the closing spring 29
4.11 Setting the forceful closing function 30
5 ELECTRICAL CONNECTIONS 31
5.1 Power supply 31
5.2 Cable layout 33
5.2.1 Lintel mounting 33
5.2.2 Leaf mounting 33
5.3 External elements 34
6 CONTROL 35
6.1 Program selector switch 35
6.2 Operating modes 35
6.3 Display and joystick 35
7 COMMISSIONING 36
7.1 Adjusting the open position stop pieces 39
7.1.1 Adjusting the internal open position stop piece 39
7.1.2 Adjusting the open position stop piece of the sliding rod 39
7.2 Low Energy mode 40
7.3 Servo operation 40
7.4 Adjustings 41
7.4.1 Motional parameters (PARAMETER) 41
7.4.2 Configuration (CONFIG) 42
7.4.3 Installations with multiple door leaves (DOUBLE DOOR) 44
7.4.4 Menu navigation 45
7.5 Closing sequence control 49
7.6 Interlock operation 52
7.6.1 Standard interlock (IL Type Safety) 52
7.6.2 Hospital interlock (IL Type Hospital) 52
7.6.3 Netherland interlock (ILType NL) 52
7.7 Adhesive labels 54
7.7.1 Service sticker 54
7.7.2 Arrow sticker 54
7.7.3 Glass sticker 54
7.7.4 Rating plate 54
7.8 Mount the drive mechanism covering 55
8 SERVICE 56
8.1 Service for pedestrian doors 57
8.2 Fundamental checking 58
9 TROUBLESHOOTING 59
9.1 Malfunction with error-no 59
9.1.1 Drive mechanism 60
9.1.2 Operating 60
9.1.3 Safety elements 61
9.1.4 Feeding 61
9.1.5 System 61
9.1.6 Options 61
9.1.7 Closing sequence / Interlock function 62
9.1.8 Internal safety test 62
9.2 Malfunction without error-no 63
9.3 Software update via USB 64
9.3.1 Preparation 64
9.3.2 Procedure 65
9.3.3. LED display on the control 65
9.3.4 Possible errors 65
10 SHUT-DOWN 66
11 DISPOSAL OF THE INSTALLATION 66
12 SPARE PARTS 67
13 OPTIONS 68
13.1 D-BEDIX 68
13.1.1 Keys 68
13.1.2 Symbols 68
13.1.3 Operating modes 69
13.1.4 Display of the door position 69
13.1.5 Menu level 70
13.1.6 Setting examples 71
13.1.7 Error display 72
13.2 KOMBI-D-BEDIX. 73
13.3 Connection plate for wooden door leaf (normal rods) 74
13.4 Continuous covering 75
13.5 Optional PCBs 76
13.5.1 Relay PCB 76
13.6 Safety sensors 77
13.6.1 LZR-FLATSCAN 78
14 APPENDIX 79
Wiring diagram E4-0141-724

1 GENERAL REMARKS

The present instructions contains all instructions for mounting, commissioning, operation, service (maintenance/checking) as well as troubleshooting. It is the basis guaranteeing a faultless and safe operation of the installation and must be completely read and understood before starting the work.

The following document is associated with this installation:

- Control booklet 0549-991/12
onto the installation

Aplicable documents:

- Mounting and operating instructions 0549-990/02
- Operator manual

0549-991/02

1.1 Target group

All the work described in the present instructions must only be carried out by experts!
Experts are persons who, based on their professional training and experience, have sufficient knowledge in the field of powered windows, doors and gates. They are sufficiently familiar with the relevant federal regulations for work protection and accident prevention, with the guidelines and generally recognized rules applicable for this field of technology which enables them to evaluate if powered windows, doors and gates can be safely operated.

Only the trained experts of the manufacturer or the supplier are counted among these persons.

1.2 Adresses

Distribution agent/
After-sales service

Manufacturer
\square
Gilgen Door Systems AG Freiburgstrasse 34 CH-3150 Schwarzenburg Phone +41317344111 Fax $\quad+41317344379$ www.gilgendoorsystems.com info@gilgends.com

1.3 Auxiliary tools and service performances

The auxiliary tools and service performances listed hereafter are available, depending on the respective situation and authorization (please ask your distribution agent):

- Company portrait
- Homepage
- E-shop (authorization)
- Solution Designer (the company's own product configuration system)
- Project administration
- Print out quotation and order confirmation for project
- Configuration of installations
- 3D-Visualization
- Calculate prices for normalized and standard doors
- Visualization of lists of parts
- Draw up work drawings
- News
- Info-News via E-mail
- Product brochures
- Product presentation (PowerPoint)
- Submission texts
- Reference list
- Test/homologation certificates
- CAD data
- Application sheets
- Plans of installations and cutouts
- Training courses
- Spare parts
- Maintenance contracts
- Around-the-clock service (not available in all the countries)

2 SAFETY

2.1 Appropriate use

The swing door drive mechanism FD 10 has been exclusively designed for operating swing doors. Any other use beyond these application limits is deemed inappropriate and inadmissible! In the event of an inappropriate use of this system, the safety of the user may be jeopardized and/or the installation be damaged. The manufacturer declines all responsibility for these injuries/damages!

2.2 Safety notices

The present instructions uses the following symbols and notes in order to point out certain residual dangers:

Warning: Involving danger to life and limb.

Attention:

A situation where material could be damaged or the function impaired.
Note:
Hints which facilitate the work.

2.3 Safety regulations

2.3.1 Principles

- Children must not be involved in the cleaning or user maintenance of this system. Very young children must not operate the system. Young children must only operate the system when under the close supervision of an adult. Older children and vulnerable persons may use this system safely once they have been shown, while under suitable supervision, how to use it appropriately.
Highly vulnerable persons can only use the system safely when under close supervision, or if it is fitted with corresponding additional equipment that amply fulfils the scope-of-use standards of the norm EN 16005.
- According to standard EN 16005 describing the safety-related requirements for automatic door systems, a risk evaluation is to be carried out (in consideration of the groups of door users and the local situation). This is the basis for the choice of the different protecting measures. The risk evaluation has to be carried out already during the planning stage to guarantee that the automatic door system can be safely installed and operated (see Risk evaluation for automatic swing door P 01.02.20).

- When configuring the installation, it is essential to make sure that the locally applicable regulations with regard to the closing edges are complied with, in order to avoid crushing and shearing points. It is particularly important to make sure that the door leaves do not have any sharp edges. The secondary closing edges must be designed by customers in such a fashion as to eliminate any dangerous crushing and shearing points.
- In order not to create any dangerous squeezing and shearing points, no structural modification must be made within the door surroundings, without prior authorization from Gilgen Door Systems. Furthermore, it is important that no objects (such as furniture, pallets, etc.) be placed in the vicinity of the door.
- The door leaves and their fillings must be manufactured according to the applicable standards (e.g. EN 16005). For the door leaf fillings, brake-proof material respectively safety glass shall be used. There must be no sharp cutting edges, and the glass must not produce sharp splinters if it is broken. Transparents door leaves (or their surfaces) must be clearly recognizable, e.g. by means of a permanent marking or dyed materials.
- The application limits must be observed.
- The choice of fastening elements depends on the construction base.
- Door sills or other protruding elements of the door system are to be identified by warning stickers or another appropriate marking means.
- In its assembled state, the installation must answer all the safety requirements specified by the machinery directive.
- The swing door drive mechanism FD 10 may only be installed and operated in dry rooms. If this condition cannot be fulfilled, the customer must provide sufficient protection from moisture.
- The swing door drive mechanism FD 10 must not be mounted within locations presenting explosion hazards. The presence of flammable gases or smoke represents a considerable safety hazard.
- All further interventions on and modifications of the installation that are not described in the present instructions are forbidden!
- Wrapping materials (such as plastic foil, polystyrene foam, strings,) represent a source of danger for children and must therefore be kept out of reach of the latter.
- The installation has been calculated, designed and manufactured on the basis of the latest state-of-the-art technology and the generally recognized safety-relevant rules and regulations. It may only be operated if it is in perfect condition, taking into account the specifications of the present instructions. Any use beyond the defined application limits is inadmissible!
- The installation is to be operated and maintained in such condition that the safety is guaranteed at all times. An integral part of this condition is the appropriate use, the compliance with the operating conditions prescribed by the manufacturer, as well as the regular service (maintenance/checking).
- The installation's conformity with the machinery directive must be confirmed.

2.3.2 Service

In order to guarantee the safety of the users at all times, the installation must be checked with regard to its safe condition before the first commissioning and during normal operation, at least once a year, by a expert. The correct maintenance/checking must be confirmed by entering the date and signature into the control booklet.

2.3.3 Safety devices

It is inadmissible to bypass, shunt or disable the safety devices. Any defective safety devices may not be disconnected in order to be able to continue the operation of the installation.

2.3.4 Malfunctions

If any malfunctions occur which might be detrimental to the safety of the users, the installation must be immediately taken out of operation. It may only be taken back into operation after the malfunction has been repaired and all danger eliminated.

2.3.5 Accessories/Spare parts

A safe and reliable function of the installation can only be guaranteed if it is operated with the original Gilgen Door Systems accessories/spare parts. Gilgen Door Systems declines all responsibility for damages resulting from unauthorized modifications of the installation or from the use of foreign accessories/spare parts.

3 PRODUCT DESCRIPTION

3.1 General remarks

The swing door drive mechanism FD 10 opens and closes the door leaf via a rod assembly (is not shown in the illustration).

3.2 Standard application

During normal operation, the opening and closing movements of the door leaf are motorized. The automatically opening is performed via opening elements. The automatically closing starts as soon as the programmed hold-open time has expired.

Function in the event of a mains failure

The door leaf is closed from any position by means of spring power. The motor attenuation ensures a controlled closing.

3.3 Automatic closing sequence control

For bi-parting installations, two separate FD 10 swing door drive mechanisms are used, which are connected via connection terminals.

3.4 Rating plate

The rating plate (including TÜV and EC identification) can be found on the direct current motor (below the drive mechanism covering).

3.5 Technical data

Drive mechanism	Standard
Power transmission	Normal rods Sliding rods
Dimensions drive mechanism	Height 70 mm Width 730 mm Depth 125 mm
Weight drive mechanism	8,2 kg
Ambient temperature	$-15 . . .+50^{\circ} \mathrm{C}$
May only be used in dry rooms	max. relative humidity 85 \%
Protection type	IP 20
Operating voltage	230 VAC (+10/-15 \%), 50 Hz
Mains supply by customer	230 VAC (+10/-15 \%), $50 \mathrm{~Hz}, 10 / 13$ A
Power consumption drive mechanism	max. 350 W
Motor power rating	100 W
Power supply external comsumer	24 VDC (± 10 \%), 1,4 A
Torque output shaft	56 Nm permanent 165 Nm max.
Lintel depth	normal rods max. 250 mm sliding rods pl $-50 /+150 \mathrm{~mm}$ ps $-50 /+150 \mathrm{~mm}$
Door leaf opening angle	max. 105°
Door leaf weight	max. 150 kg
Door leaf width	730...1'100 mm (lintel mounting) 800...1'100 mm (leaf mounting)
Opening speed	2,4... 20 s adjustable (max. $40^{\circ} / \mathrm{s}$)
Closing speed	2,4... 20 s adjustable (max. $40^{\circ} / \mathrm{s}$)
Foreceful closing range (without mains power)	$\approx 10 . .15^{\circ}$ not adjustable
Forceful closing cushioning (without mains power)	stepless adjustable (adjusting trimmer)
Hold-open time	0... 60 s
Hold-open time Night	0... 180 s

3.6 Application limits without safety elements according to EN 16005

STOP

Warning:

In the event of swing doors installed in a non publicly accessible areas, without installation of safety elements that monitor the door leaf movement, the setting values specified hereafter for the opening speed Vo and the closing speed Vc must not be exceeded.
Opening force Fo and closing force $\mathrm{Fc}=\max .4!$
Lintel mounting (all rod assemblies)

Leaf weight Leaf width		$\begin{gathered} 0 . . .40 \\ \mathrm{~kg} \\ \hline \end{gathered}$	$\begin{gathered} 41 \ldots 60 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 61 \ldots 80 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 81 \ldots 100 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 101 \ldots 120 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 121 \ldots 150 \\ \mathrm{~kg} \end{gathered}$
	$730 . .750 \mathrm{~mm}$	12	11	10	9	8	7
EN 2	751... 850 mm	11	10	9	8	7	7
EN 3	851... 950 mm	10	9	8	7	6	6
EN 4	951...1'100 mm	9	8	7	6	5	5

Leaf mounting (all rod assemblies)

Leaf width	Leaf weight	$0 \ldots 40$ kg	$41 \ldots 60$ kg	$61 \ldots 80$ kg	$81 \ldots 100$ kg	$101 \ldots 120$ kg	$121 \ldots 150$ kg
EN 2	$800 \ldots 850 \mathrm{~mm}$	9	9	8	7	6	6
EN 3	$851 \ldots 950 \mathrm{~mm}$	9	8	7	6	5	5
EN 4	$951 \ldots 1^{\prime} 100 \mathrm{~mm}$	9	8	7	6	5	5

4 MOUNTING

4.1 General

Attention:
It is recommended that a door leaf stop piece be mounted by the customer. This stop piece prevents the door leaf/drive mechanism from being damaged in the manual operating mode, in case of misuse or vandalism.
The internal open position stop piece cannot ensure this protective function.

Attention:
Check the free running movement of the door leaf. Should it fail to move smoothly and silently, or if it is out of balance (i. e. it opens or closes by itself), these problems must be eliminated first!

Warning:
STOP
The fastening bases must provide sufficient solidity. If necessary they have to be reinforced by the appropriate means.

Attention:
The maximum admissible undulation of the fastening base is 1 mm . The drive mechanism must be fastened without torsion and perpendicularly, using all the six fixing holes!

4.2 Mounting versions

$\int\ulcorner$ Note:

The output shaft of the drive mechanism is close to the door hinge at all times.
The drive mechanism turns in one direction only. It must rotate through 180° (depending on the type of installation).
The position of the control unit (D) must be established in advance accordingly.

4.3 Drive mechanism

1. Mark and drill fixing holes in the lintel/door leaf (according to the respective situation).
$\square \square$

Note:

You can use the chassis profile (B) as a drilling template.
Observe the alignment of the chassis profile (B).
Four of the six drive-module fixing screws (C) are located near to the door hinge (D).
2. Use the six fixing screws (A) to mount the chassis profile (B).

STOP Warning:

3. Attach the drive module to the chassis profile (B):
a) Provisionally attach the two lower screws (C) - of the four nearer to door hinge (D) - to chassis profile (B) at a distance, measured from screw-head to chassis, of 7 to 10 mm .

b) For normal rods RS and sliding rods RG pushing function:
Hang the drive module, with the PUSH sign facing the chassis profile (B), onto the two pre-inserted screws (C). Adjust the position of the control unit (E) before proceeding.
c) For sliding rods RG pulling function:
Hang the drive module, with the PULL sign facing the chassis profile (B), onto the two pre-inserted screws (C).
d) Tighten all the six fixing screws (C).

Warning:

Tighten all the six fixing screws (C) with a torque of 6 Nm!

4.4 Normal rods RS pushing function / Lintel mounting

Material:

1 Drive mechanism Drive mechanism incl. fixing set
$0549-010$
$0549-011$
$0549-104$
$0548-163$

Covering aluminium
 Covering inox

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf and mount the drive mechanism.

2. Close the door leaf.
3. Separate the rotating arm (C) from the rod arm (B) by loosen the screw (E).
4. Fasten the rod arm (B), by means of the door connection angle (A), onto the door leaf: For metric screws = tightening moment $10 \mathbf{N m}$.
5. Position the rotating arm (C) approx. perpendicularly with regard to the door leaf and screw it down in this position \Rightarrow Tightening moment $25 \mathbf{N m}$.
6. Slightly loosen the screws (D) and fasten the rotating arm (C), by means of the screw (E) to the rod arm $(B) \Rightarrow$ Tightening moment 5 Nm .
Attention:
Adjust the rods to the required length. Choose the largest possible distance between both screws (D).
7. Prestress the rotating arm (C) until the rod arm (B) forms a right angle with the door leaf. Fasten the rod arm (B) by means of the screws (D) \Rightarrow Tightening moment 9 Nm .

!
Attention:
Check the motional sequence of the door leaf: The rods must not touch!
\Rightarrow forward to chapter 4.10

4.5 Normal rods RS pushing function / Leaf mounting

Material:

1 Drive mechanism Drive mechanism incl. fixing set
$0549-010$
$0549-011$
$0549-104$
$0548-163 / 02$

Covering aluminium

Covering inox
1 Normal rods RS
0548-163/02

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf and mount the drive mechanism.

2. Close the door leaf.
3. Separate the rotating arm (C) from the rod arm (B) by loosen the screw (E).
4. Fasten the rod arm (B), by means of the door connection angle (A), onto the lintel: For metric screws = tightening moment $10 \mathbf{N m}$.
5. Position the rotating arm (C) approx. perpendicularly with regard to the door leaf and screw it down in this position \Rightarrow Tightening moment $25 \mathbf{N m}$.
6. Slightly loosen the screws (D) and fasten the rotating arm (C), by means of the screw (E) to the rod arm $(B) \Rightarrow$ Tightening moment 5 Nm .
Attention:
Adjust the rods to the required length. Choose the largest possible distance between both screws (D).
7. Prestress the rotating arm (C) until the rod arm (B) forms a right angle with the door leaf. Fasten the rod arm (B) by means of the screws (D) \Rightarrow Tightening moment 9 Nm .

!
Attention:
Check the motional sequence of the door leaf: The rods must not touch!
\Rightarrow forward to chapter 4.10

4.6 Sliding rods RG pushing function / Lintel mounting

Material

1 Drive mechanism Drive mechanism incl. fixing set
1 Sliding rods RG
0549-010
Covering aluminium
0549-011
0549-104
0548-164

Covering inox

650 mm incl. sliding bolts $18 / 46 \mathrm{~mm}$

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf and mount the drive mechanism. [\int Note:

The illustration shows the 18 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 46 mm . This will change the respective dimensions by plus 28 mm .

Lintel depth (mm)	Max. door leaf opening angle $\left({ }^{\circ}\right)$	Rod as- semblies	A	B	C	D
$-30 \ldots+30$	105	$0548-164$	130	70	160	790
$31 \ldots 50$	105	$0548-164$	130	60	160	790
$51 \ldots 80$	105	$0548-164$	140	50	170	800
$81 \ldots 100$	105	$0548-164$	150	50	180	810
$101 \ldots 120$	100	$0548-164$	150	40	180	810
$121 \ldots 150$	95	$0548-164$	160	30	190	820

Option	Axle exten- sion (mm)	$*$	$* *$ Sliding bolt 18 mm	$* *$ Sliding bolt 46 mm
Standard	0	$10 \ldots 18$	40	68
$0548-190$	+12	$10 \ldots 30$	52	80
$0548-191$	+20	$10 \ldots 38$	60	88
$0548-192$	+30	$10 \ldots 48$	70	98
$0548-193$	+40	$10 \ldots 58$	80	108
$0548-194$	+50	$10 \ldots 68$	90	118

With lintel depths $>100 \mathrm{~mm}$ we recommend using the normal rods.

2. Close the door leaf.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 14 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by
 means of screw (G) \Rightarrow Tightening moment 5 Nm.

\triangle
Attention:
When tightening the screw (G), the bolt (F) must not come loose!
6. Screw down the rotating arm (D) on the drive unit \Rightarrow Tightening moment $\mathbf{2 5} \mathbf{~ N m}$.

Attention:
The pre-stressing of the rotating arm (D) depends on the existing lintel depth.
Example: Lintel depth 0 mm , pre-stressing of the rotating arm (D) $\approx 15^{\circ}$ (1 grid increment of the output shaft $\left.=15^{\circ}\right)$.
7. Slide the sliding rail (C) over the glider (E) and the open position stop piece (B) and bolt it onto the door leaf: For metric screws = tightening moment $\mathbf{1 0} \mathbf{~ N m}$.
$\square\ulcorner$ Note:
The open position stop piece (B) will bolt into place only after the commissioning (see chapter 7.1).
8. Insert the covering caps (A) on both sides.

Attention:
Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.
\Rightarrow forward to chapter 4.10

4.7 Sliding rods RG pushing function / Leaf mounting

Material:

1 Drive mechanism Drive mechanism incl. fixing set
0549-010
Covering aluminium
0549-011
0549-104
1 Sliding rods RG
0548-164/02 800 mm incl. sliding bolts $18 / 46 \mathrm{~mm}$

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf and mount the drive mechanism. [\int Note:

The illustration shows the 18 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 46 mm . This will change the respective dimensions by plus 28 mm .

2. Close the door leaf.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 14 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by
 means of screw (G) \Rightarrow Tightening moment 5 Nm.

\triangle
Attention:
When tightening the screw (G), the bolt (F) must not come loose!
6. Screw down the rotating arm (D) on the drive unit \Rightarrow Tightening moment $\mathbf{2 5} \mathbf{~ N m}$.

Attention:
The pre-stressing of the rotating arm (D) depends on the existing lintel depth.
Example: Lintel depth 0 mm , pre-stressing of the rotating arm $(\mathrm{D}) \approx 15^{\circ}$ (1 grid increment of the output shaft $\left.=15^{\circ}\right)$.
7. Slide the sliding rail (C) over the glider (E) and the open position stop piece (B) and bolt it onto the lintel: For metric screws = tightening moment $\mathbf{1 0} \mathbf{~ N m}$.

$\square \int$ Note:

The open position stop piece (B) will bolt into place only after the commissioning (see chapter 7.1).
8. Insert the covering caps (A) on both sides.

Attention:
Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.
\Rightarrow forward to chapter 4.10

4.8 Sliding rods RG pulling function / Lintel mounting

Material:

1 Drive mechanism Drive mechanism incl. fixing set
1 Sliding rods RG
$0549-010$
$0549-011$
$0549-104$
$0548-164$
Covering aluminium
Covering inox
650 mm incl. sliding bolts $18 / 46 \mathrm{~mm}$

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf.
[\int Note:
The illustration shows the 46 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 18 mm . This will change the respective dimensions by minus 28 mm .

2. Close the door leaf.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 14 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by
 means of screw (G) \Rightarrow Tightening moment 5 Nm.

Attention:

When tightening the screw (G), the bolt (F) must not come loose!
6. Prior to the installation of the drive unit:

Screw down the rotating arm (D) on the drive unit \Rightarrow Tightening moment 25 Nm.
Attention: The pre-stressing of the rotating arm (D) depends on the existing lintel depth. Example: Lintel depth 0 mm , pre-stressing of the rotating arm (D) $\approx 15^{\circ}(1$ grid increment of the output shaft $=15^{\circ}$).
7. While mounting the drive unit, push the rotating arm (D) back by the pre-stressing angle of 20°.
8. Slide the sliding rail (C) over the glider (E) and the open position stop piece (B) and bolt it onto the door leaf: For metric screws = tightening moment $\mathbf{1 0} \mathbf{~ N m}$.

Note:
The open position stop piece (B) will bolt into place only after the commissioning (see chapter 7.1).
9. Insert the covering caps (A) on both sides.

Attention:
Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.
\Rightarrow forward to chapter 4.10

4.9 Sliding rods RG pulling function / Leaf mounting

Material:

1 Drive mechanism Drive mechanism incl. fixing set
1 Sliding rods RG
0549-010
Covering aluminium
0549-011
0549-104
0548-164/02

Covering inox

800 mm incl. sliding bolts $18 / 46 \mathrm{~mm}$

Procedure:

1. Mark out/drill the fastening holes on the lintel/door leaf.
[\int Note:
The illustration shows the 18 mm sliding bolt. Depending on the situation, this bolt can be replaced by the version 46 mm . This will change the respective dimensions by plus 28 mm .

2. Close the door leaf.
3. First loosen the screw (G) of the glider (E), then the bolt (F) of the rotating arm (D).
4. Depending on the situation, select the short 18 mm or long 46 mm bolt (F) and fasten it to the rotating arm (D) by means of screw locking adhesive Loctite $243 \Rightarrow$ Tightening moment 14 Nm.
5. Push the glider (E) over the bolt (F) and fasten it by
 means of screw (G) \Rightarrow Tightening moment 5 Nm.

\triangle
Attention:
When tightening the screw (G), the bolt (F) must not come loose!
6. Prior to the installation of the drive unit:

Screw down the rotating arm (D) on the drive unit \Rightarrow Tightening moment 25 Nm.
Attention:
The pre-stressing of the rotating arm (D) depends on the existing lintel depth. Example: Lintel depth 0 mm , pre-stressing of the rotating arm (D) $\approx 15^{\circ}$ (1 grid increment of the output shaft $\left.=15^{\circ}\right)$.
7. While mounting the drive unit, push the rotating arm (D) back by the pre-stressing angle of 20°.
8. Slide the sliding rail (C) over the glider (E) and the open position stop piece (B) and bolt it onto the lintel: For metric screws = tightening moment $10 \mathbf{N m}$.
$\square\ulcorner$ Note:
The open position stop piece (B) will bolt into place only after the commissioning (see chapter 7.1).
9. Insert the covering caps (A) on both sides.

\triangle
Attention:
Check the motional sequence of the door leaf: The rods must not touch! If the glider (E) makes screeching noises, it needs to be lubricated wih a little WD40.
\Rightarrow forward to chapter 4.10

4.10 Adjusting the pre-stressing of the closing spring

Upon delivery, the closing spring (B) is pre-stressed for a measure $X=300 \mathrm{~mm}$. In exceptional cases, the spring tension (setting X) may be set to between 300 mm and a maximum of 267 mm (without the pre-fitted rod assembly).

Note:
The correct pre-stressing of the closing spring must imperatively be adjusted before carrying out the automatic teach-in procedure! As a general rule, the closing spring (B) force can be reduced when setting the standard drive mechanism.
A possibly existing door lock must be correctly engaged to lock the leaf.
Otherwise: adapt the pre-stressing of the closing spring or the door slam cushioning (potentiometer) accordingly.

Procedure:

1. Close the door leaf.
2. Using the setting screw (A), adjust the measure X in function of the respective situation.
3. Open the door leaf by at least 60° and then let it be closed.

STOP

Warning:

The force necessary for manually opening a door must not exceed $\mathbf{1 5 0} \mathbf{N}$. This effort shall be measured as a static force on the main closing edge (perpendicularly to the door leaf), at a height of 1 ' $000 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

4.11 Setting the forceful closing function

While an installation is in the state without mains power or in the operating mode MANUAL, the motor acts as an attenuator, thus guaranteeing a constant closing speed until the forceful closing range is reached.

To make sure that, when switched to the de-energized state or in the operating mode MANUAL, the door leaf is reliably engaged by the door lock, the drive mechanism is equipped with a forceful closing function (acceleration causing a forceful closing). By means of the potentiometer, the forceful closing cushioning (shortly before the door leaf reaches the closed position) can be adjusted accordingly.

Procedure:

1. Open the door leaf by 90° and then let it be closed.
2. Should the door leaf fail to engage in the lock, set the forceful closing cushioning (by means of the potentiometer provided on the control unit).

STOP

Warning:

In de-energized state or in the operating mode MANUAL, the closing procedure must last at least 3 seconds (from the open position 90° up to the closed position 0°).

Control PCB

Function adjusting trimmer (depending on position of the door leaf):
Open position up to forceful closing range (reference switch) \Rightarrow Adjusting closing speed Forceful closing range (reference switch) up to closed position \Rightarrow Adjusting forceful closing cushioning

5 ELECTRICAL CONNECTIONS

5.1 Power supply

STOP

Warning:

Electric shock hazard! Before working on the drive mechanism, completely disconnect the local mains power supply and block it to prevent accidental or unauthorised reactivation. Ensure also that country-specific regulations are observed. The mains power supply must meet the following requirements: 230 VAC (+10/-15 \%), $50 \mathrm{~Hz}, 10 / 13 \mathrm{~A}$.

Procedure:

1. Guide the power connection terminal (B) of the drive module through the protection shield (A) and attach on the side cover (C).

2. If required: Break out the pre-perforated flaps (D) on the side cover (C).
3. Connect the mains cable (E) and fit the strain relief clamp (F).

4. Attach both side covers (C) to the chassis profile (G).
\square Note:
Depending on the assembly situation, it may be advisable to install the program selector switch (H) on the opposite side.

5. Connect the program selector switch (H) to the control unit.

5.2 Cable layout

5.2.1 Lintel mounting

Be sure to run the cable between the drive module and the chassis profile wherever possible!

5.2.2 Leaf mounting

5.3 External elements

1. Mount all the required control and safety elements at their respective place.
2. Lead the cables of the elements up to the drive mechanism (by customers).
3. Connect the cables according to the diagram E4-0141-724 (in the appendix).
$\square \int$ Note:
If an electric lock is provided, its connection rating is 24 VDC and max. $0,5 \mathrm{~A}$ (or $24 \mathrm{VAC} / 1,5 \mathrm{~A}$ by customers). It should be designed for a duty cycle of 100%. The electric lock locks the door leaf in the desired operating modes and is configurable.

6 CONTROL

6.1 Program selector switch

The drive mechanism is supplied with a built-in program selector switch (A), which allows enabling the operating modes AUTOMATIC, OPEN and MANUAL.

6.2 Operating modes

The following operating modes can be enabled by means of the program selector switch (A):

AUTOMATIC (I)

Automatic opening via the opening elements inside/outside + Key.
Automatic closing upon expiration of the adjustable hold-open time.
MANUAL (0)
The drive mechanism and the control elements are switched off.
The door leaf can be manually opened.
The door leaf is closed by spring power from any position.

OPEN (II)
The door leaf is automatically opened and remains in the OPEN position.

A selector switch can be connected to the corresponding terminals on the control unit for the following operating modes (see circuit diagram in appendix):

NIGHT

The door leaf can only be opened via the opening element Key (key-operated siwtch outside).

EXIT

The door leaf can only be opened via the opening elements inside and Key.

6.3 Display and joystick

The parameters can be changed on the control unit by means of the display and the joystick.
The movements of the joystick have the following effects:

- Vertical joystick movement (upward/downward) \Rightarrow Scroll through the displayed information.
- Horizontal joystick movement (to the left/to the right) \Rightarrow Change the settings.
- Shortly press in the joystick in the rest position \Rightarrow Validation OK.

7 COMMISSIONING

STOP During the teach-in procedure (which must only be carried out by experts), the safety devices (radar, sensors, ...) are switched off!
Before initiating the teach-in procedure, it is important to make sure that neither persons nor objects remain within the danger area of the moving door leaf, in order to avoid injuries or damages!

Procedure:

1. Switch on the drive mechanism on the side cover (Power-up).

2. Using the joystick, adjust the display direction: Move the joystick downward once \Rightarrow the display direction is switched to a readable position.

Press

Down
3. Programming the type of rod assembly Rod:

Move the joystick to the left/to the right (see parameter chapter 7.4). Validate the correct type of rod assembly by means of OK:
In the rest position, shortly push in the joystick.
4. Adjust the distance dAxis (distance in cm between the rotation axis of the door hinges and the mounting level of the drive mechanism \Rightarrow see illustration below).

```
dAxis
5cm
```


\square Note:

dAxis is an approximate value. Depending on the installation situation, dAxis may have to be adapted.
5. Adjust the opening angle Ao and validate by means of OK.

Attention:
The steps 4 and 5 are influenced by the installation measures/

Ao
95°
6. If existing:

Select Low Energy (low energy operation) (\Rightarrow ON) and confirm with OK.

Low En
 OFF

7. Adjust the door leaf width and validate by means of OK.
8. Adjust the door leaf weight and validate by means of OK.

9．Adjust the opening speed Vo and validate by means of OK．

10．Adjust the closing speed Vc and validate by means of OK ．

11．Adjust the teach－in procedure（Teach）and validate by means of OK．

12．Start the teach－in procedure（Teach）：validate by means of OK．

13．Upon expiry of 10 seconds the teach－in procedure（Teach）is auto－ matically initiated（or immediately by means of moving the joystick勺へ $\Rightarrow \sqrt{ }$ without OK）．During the teach－in procedure the drive mechanism continues to beep．The following learning run is carried out：
－Super－slow speed opening direction
－Super－slow speed closing direction．
Teach

Teach
 ok？

Teach1

x E10

14．Upon completion of the learning run the following message is dis－ played：

15．The display should now supply the following information：
E11 indicates that the teach－in procedure（Teach）is not yet comple－ ted．

16．By giving an opening command，open the door leaf and let it be closed again．\Rightarrow The door leaf will open and close at normal speed （without obstacle detection feature）．
Remark：
The door leaf must not be obstructed！
Now the display should provide the following information：
E13 indicates that the spring tension test is still pending．

17．By giving an opening command，open the door leaf and let it be closed again．\Rightarrow The door leaf will open at normal speed．After ex－ piry of the hold－open time，the door leaf closes by means of spring force（thereby the closing time is measured）．

Remark：
The door leaf must not be obstructed！
Now the display should provide the following information：

If the required minimum closing time is not respected，error E86 is displayed．
In this case，the spring tension must be reduced until the required minimum closing time is met．
Menu Diagnostics shows the nominal and the effective closing time．

\int Note:

A renewed teach-in procedure (Teach) is required if:

- the spring tension has been changed
- the door leaf width has been changed
- the door leaf weight has been changed
- the type of rod assembly has been changed
- the opening angle Ao has been changed
- the Teach has been obstructed before reaching an opening angle of 20°
- the distance between axles (dAxis) has been changed
- the spring tension is too high.

Additional parameter and menu navigation \Rightarrow see chapter 7.4

7.1 Adjusting the open position stop pieces

\int Note:

The commissioning must be completed according to chapter 7 .

7.1.1 Adjusting the internal open position stop piece

Procedure:

1. Select operating mode OPEN (door leaf opens and remains in the open position).
2. Loosen the three screws (A) on the open position stop piece (B).
\int Note:
If the open position stop piece (B) sticks, gently tap the screws (A) to loosen it. Remove the screws (A) only if necessary and individually. The open position stop piece (B) must always be held by at least one screw (A)! Otherwise, the open position stop piece (B) may fall out.
3. Push the open position stop piece (B) counterclockwise as far as it will go, then push back by $\approx 2 \mathrm{~mm}$ and tighten all the screws $(\mathrm{A}) \Rightarrow$ Tightening moment 6 Nm .
4. Select operating mode AUTOMATIC (door leaf closes).

7.1.2 Adjusting the open position stop piece of the sliding rod

 Procedure:1. Select operating mode OPEN (door leaf opens and remains in the open position).
2. Shift the open position stop piece in the sliding rail up to the glider, then push it back approx. 5 mm and bolt into place \Rightarrow Tightening moment 9 Nm .
3. Select operating mode AUTOMATIC (door leaf closes).

7.2 Low Energy mode

If no sensor system is used, the drive mechanism must be operated in the Low Energy mode, which answers the low energy requirements according to EN 16005.

In the Low Energy mode, the drive mechanism is automatically set so that the door leaf does not exceed an energy of $1,69 \mathrm{~J}$. For this purpose, the LowEnergy parameter must be set on ON during commissioning. Afterwards, the door leaf weight and door leaf width are queried. Based on the parameters entered, the drive mechanism regulates the correct opening and closing time.

7.3 Servo operation

In the Servo operation, the drive mechanism compensates the closing force of the spring. For the user, the door behaves like a normal door (without drive mechanism).
In the servo-operation, the door behaviour is as follows:

- The door always closes automatically.
- If the door is pushed open again by hand during the automatic closing procedure, the drive mechanism switches back to servo operation.
- The servo support can be adjusted in 5 stages (depending on door leaf width and weight).
- In the servo operation, the door can still be opened automatically by means of Key command (push-button/radio).

Example:
For normal users, the door behaves like any normal manually operated door. For disabled persons, the door can be opened automatically.

7.4 Adjustings

The parameters can be changed on the control unit by means of the display and the joystick.

7.4.1 Motional parameters (PARAMETER)

Parameter	Description			Setting range	Default
Vo	Opening speed (velocity open)			$\begin{array}{\|l\|} \hline 0 . . .14 \\ \left(5 \ldots . .40^{\circ} / \mathrm{s}\right) \\ \hline \end{array}$	6
Vc	Closing speed (velocity close)			$\begin{array}{\|l\|} \hline 0 . . .14 \\ \left(5 \ldots . .40^{\circ} / \mathrm{s}\right) \\ \hline \end{array}$	4
TOEx	Hold-open time opening element inside/outside (time hold opening element inside/outside)			0... 60 s	3 s
TKey	Hold-open time Key (time hold opening element Key)			0... 180 s	5 s
TDelay	Starting delay (time delay lock)			0,0..4,0 s	0,2 s
FDelay	Relieving force during unlocking (force delay) \Rightarrow only effective if TDelay is >0			0,0...7,0 A	OFF
TLock	Door rectification time (time press close)			0,0...4,0 s	0,5 s
FLock	Pressing force during locking (force lock) \Rightarrow only effective if TLock is >0			0,0...7,0 A	2,0 A
FSlam	Accelerating function (force slam)			0... 10	OFF
FWind	Obstacle detection optimized for exterior doors (force wind)			OFF OPEN CLOSE BOTH	OFF
Fo	Opening force (force open)			0... 9	4
Fc	Closing force (force close)			0... 9	4
Foh	Hold-open force (force open hold)			0... 9	0
Fch	Interlocking force (force close hold) \Rightarrow automatically programs FLock and FDelay if these are 0			0,0...3,5 A	0
LowEN	Low-energy operation (Low Energy) according to EN 16005			OFF BOTH CLOSE OPEN	OFF
Width	Width door leaf to be adjusted \Rightarrow only if LowEn is active			$75 . . .110 \mathrm{~cm}$	75 cm
Weight	Weight door leaf to be adjusted $\Rightarrow \Rightarrow$ only if LowEn is active			$50 . .150 \mathrm{~kg}$	50 kg
Ao	Door leaf opening angle (angle open) If the opening angle is changed during the operating mode OPEN, the operating mode MANU- AL needs to be selected for closing the door.			20...(190 $)$ Rod depending	95°
Rod	Type of rod assembly (Rod) Lintel mounting Leaf mounting	Normal rods Sliding rods Sliding rods Sliding rods Sliding rods Normal rods	pushing fonction pulling fonction pushing fonction pushing fonction pulling fonction pushing fonction	$\begin{aligned} & \text { STD-PH } \\ & \text { SLI-PL } \\ & \text { SLI-PH } \\ & \text { WIN-PH } \\ & \text { WIN-PL } \\ & \text { WIN-ST } \end{aligned}$	STD-PH
dAxis	Distance between rotation axis of the door hinges and the nism (distance Axis). dAxis is an approximate value. Depen dAxis may have to be adapted.	unting level of g on the insta	the drive mechaation situation,	$\begin{aligned} & -8 \ldots+25 \mathrm{~cm} \\ & \text { Rod depending } \end{aligned}$	$0 /+8 \mathrm{~cm}$ Rod dep. *

* Note:

A renewed teach-in procedure (Teach) is required.

7.4.2 Configuration (CONFIG)

Parameter	Description	Setting range	Default
Servo	Support for manual push to open. The key opens automatically. Five-position adjustment, depending on the width and weight of the door leaf.	$\begin{aligned} & \text { OFF } \\ & 1 \ldots 5 \end{aligned}$	OFF
APuGo	Triggering angle Push\&Go (angle push\&go)	OFF, $2 . . .10^{\circ}$	OFF
ASES	Suppression point Safety Element stop (angle safety element stop) \Rightarrow see illustration 1). If Ao is changed, ASES is auomatically set to Ao.	45°...Ao	95° Ao depen- ding $\left(95^{\circ}\right)$
ASER	Suppression range of the safety element reversing (angle safety element reversing) \Rightarrow see illustration 2)	$0 . . .60^{\circ}$	0°
SeOpCo	Persistent opening (saferty element open continue) After a Safety Element Stop during the opening procedure, the door shall continue its opening move (instead of closing), as soon as SES is activated.	OFF ON	OFF
SeOpTi	Waiting time till the drive mechanism closes even if SeOpCo = ON (saferty element opening time), in the event that a fixed object blocks the door (only visible if SeOpCo = ON).	$\begin{aligned} & \text { PERMAN } \\ & 1 . . .60 \mathrm{~s} \end{aligned}$	20 s
SESClo	Safety element Stop activated/deactivated during the closing motion (safety element stop closing)	ACTIVE INACTI	INACTI
EMY-IN	Configuration of the Emergency terminal (break contact) (emergency input)	CL-SPR (spring) STOP OPEN CL-MOT (motor)	CL-SPR
OExStp	Step-by-step control function (opening element step)	OFF OEI OEO KEY	OFF
RC 0.1	Parametrizable relay output 1 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	CLOSED OPENNG	CLOSED
RC 0.2	Parametrizable relay output 2 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	OPEN CLOSNG	OPEN
RC 0.3	Parametrizable relay output 3 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	ERROR PSAUTO PSNGHT	ERROR
RC 0.4	Parametrizable relay output 4 on optional PCB 1 (relay contact) (only visible if relay PCB 0 is plugged in)	PSEXIT PSOPEN	GONG
RC 1.1	Parametrizable relay output 1 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)	PSMANU GONG	OPENNG
RC 1.2	Parametrizable relay output 2 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)	$\begin{aligned} & \text { LOCKED } \\ & \text { SIX3OS } \end{aligned}$	CLOSNG
RC 1.3	Parametrizable relay output 3 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)	EMY_AL	PSAUTO
RC 1.4	Parametrizable relay output 4 on optional PCB 2 (relay contact) (only visible if relay PCB 1 is plugged in)		LOCKED
Unlock	Impulse/Permanent unlocking (impulse unlock)	IMPULS PERMAN	IMPULS
UnloCl	Engage (unlock) and secure the motorised lock before closing, if the door leaf is to be closed.	INACTI ACTIVE	INACTI
EL-Fb	Return signal of the electric lock (electric lock feed back) N.O. \Rightarrow Contact open if in the unlocked state (-), .closed if iin the locked state (+) N.C. \Rightarrow Contact open in the locked state (+), closed in the unlocked state (-) $(+)$ and (-) indicate the status in the diagnostic menu.	$\begin{array}{\|l\|} \hline \text { OFF } \\ \text { N.O. } \\ \text { N.C. } \\ \hline \end{array}$	OFF
LockAU	Operating mode AUTOMATIC locked (locked automat) (only visible if Unlock = Perman)	UNLOCK LOCK	UNLOCK
LockEX	Operating mode EXIT locked (locked exit) (only visible if Unlock = Perman)	UNLOCK LOCK	LOCK
LockMA	Operating mode MANUAL locked (locked manual) (only visible if Unlock = Perman)	UNLOCK LOCK	UNLOCK

LcdDir	Orientation of the display (LCD direction)	$0 \ldots 1$	0
MovCon	Endurance test Open/Close (moving continuous)	OFF ON-FLT ON-PRM	OFF
OExMAN	Acceptance of opening commands after a manual door opening (only if APuGo = OFF) (opening element inside/outside manual)	OFF ON	OFF
OEOSIR	Safety device on opposite side to door hinge as opening element (only from Closed position). Note: This parameter must be set to OFF for teaching-in of the LZR-FLATSCAN. (SER as OEO)	OFF ON	OFF
PSKIZe	Zero position of the program setting (operating mode); fixed program position that can only be changed by means of the terminals on the control unit (program selector key in the side cover inactive). Use for external program switch (only four terminals) or for controlling the program positions via the terminals on the control unit. (program selection terminal zero)	No Act PSOpen PSHand PSAuto PSExit PSNigt	No Act
SCBloc	Lock the program selector key in the side cover (side cover block) Toggle $=$ Lock/unlock (press active program key during at least 5 seconds). Time = Lock (automatically after 5 minutes without any activation of the program keys), unlo- lking (press active program key during at least 5 seconds).	OFF Toggle Time	OFF
Buzzer	The buzzer signals the door leaf movement (persons with amblyopia/without hindrance)	OFF BOTH OPEN CLOSE	OFF

Illustration 2)
closed

7.4.3 Installations with multiple door leaves (DOUBLE DOOR)

Parameter	Description	Setting range	Default
DubleD	Closing sequence role (Master/Slave) and interlock side (A/B)	OFF MastrA SlaveA MastrB SlaveB	OFF
AoSeq	Current delay angle for opening sequence control (Slave) (only visible if DubleD is active)	0...110 ${ }^{\circ}$	20°
AcSeq	Current delay angle for closing sequence control (Master) (only visible if DubleD is active)	0...110 ${ }^{\circ}$	20°
InterL	Interlock	OFF SideA SideB	OFF
ILAuto	Interlock mode Operating mode AUTOMATIC (only visible if InterL is active)	Inacti Active	Active
ILExit	Interlock mode Operating mode EXIT (only visible if InterL is active)	Inacti Active	Active
ILNigt	Interlock mode Operating mode NIGHT (only visible if InterL is active)	Inacti Active	Active
ILType	Safety The two doors function as an interlock (in all operating modes). The second door only opens when the first one is closed. This applies to both doors. Spital Automatic sequence \Rightarrow whenever a door opening command is issued, the door receiving the command is opened. Once it has closed again, the second door opens automatically. NL The second door only opens when the first one is closed, or after the override period has elapsed.	Safety Spital NL	Safety
TOverd	Only visible in ILType NL When the override period has elapsed, the interlock function is cancelled. Once both doors are closed, the interlock function is activated. (override time)	OFF $1 . . .60 \mathrm{~s}$	OFF
RdrOEI	OFF OEO/OEI radar function activates normally. The door closes if both are inactive. ON The OEO deactivates the (OEI) radar inside smaller interlocks to prevent it from keeping the door open.	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	OFF
ILCdRc	Active Open commands are temporarily stored, and then carried out as soon as the second door is closed. Inactive Open commands are not carried out until the second door is closed. (interlock open command recording)	Active Inacti	Active

7.4.4 Menu navigation

On the 1st level, the following information is shown on the display:

1st display line:

The door position is represented by means of the arrows (><). Alternatively, the motion-relevant opening and safety signals are displayed. The double hash signs (\#\#) indicate that the door is locked. In the open position the hold-open time is shown in the form of a countdown.

Display of the door position:
<REF?> Waits for reference switch
< ?? > Unknown
>< Closed
>\#\#< Closed and locked
<< >> Opening
$<>$ Open
>> << Closing
$==\quad$ Stopping
Display of the door control:
OEO Opening element outside
OEI Opening element inside
KEY Opening element NIGHT
SES Safety element Stop
SER Safety element Reversing
SEF Safety element Force (obstacle detection)
EMY Emergency element
PUGO Push-and-Go

2nd display line:

- at the bottom, left-hand side, the presently enabled operating mode is displayed (a frame around the symbol indicates the overriding operating mode).
- (m) means closing sequence - Master
- (s) means closing sequence - Slave
- (w) means interlock
- at the bottom, right-hand side, the presently active errors are displayed.

By means of OK you can switch over from the first to the second level.

DIAGNOSTICS
Diagnostic tools

- K-I-O-R-S-E shows the inputs KEY (K), OEI (I), OEO (O), SER (R), SES (S), EMY (E).
(+) stands for active, (-) for inactive.
- $5.1 \mathrm{~A} 95^{\circ}$ shows the motor current and the door opening angle.
- Simulate Key: OK triggers a Key command.
- E-Lock: L- shows the status of Lock (L). FB- shows the input El-Fb. OK actuates the electric lock. L+ resp. FB+ means locked. L- resp. FB- means unlocked.
- HW Version: Version of the Logic PCB.
- SW Version: Version of the Software.
- Cycles: Total number of openings (this value is memorized).
- Read out spring tension test/cushioning test (nominal closing time and effective closing time).

Optional PCBs \Rightarrow see chapter 13.5.

ERROR ACTIVE

Pending active errors

- The pending active errors are displayed in a list. This list is updated at the end and the latest additions appear during the next passage.
AO indicates the latest error that has occurred.
- Exit the list by pressing OK.

HISTOR ERROR

Formerly active errors

- HO indicates the latest error that has occurred.

REINIT

Carry out a re-initialization

- PARAM Reset sets all the motional parameters back to the default values (inclusive opening angle, rod assemblies and dAxis).
- CONFIG Reset sets all the configuration settings back to the default values.
- DOUBLE Reset sets all the closing sequence and interlock settings back to the default values.
- FACTOR Reset

The control unit is reset to the delivery configuration programmed by the manufacturer. This means that all the motional parameters, configurations, closing sequence and interlock settings are reinitialized with the default settings.

- Reset OK? is validated by means of OK and aborted by any other joystick movement.

BLOCK/UNBLOC

Lock/unlock the joystick

- BLOCK

Lock the joystick. For a temporary unlocking, press OK for more than 1 second.
60 seconds after the last joystick actuation, the joystick is automatically relocked.

- UNBLOC

Permanent unlocking of the joystick.

UPDATE SW

Carry out a Software-Update

TEACH

Completely close the door leaf. Initiate a teach-in procedure (during the teach-in procedure the drive mechanism continues to beep).

- Teach OK? is validated by means of OK and aborted by any other joystick movement.
- The teach-in procedure can be canceled by means of the D-BEDIX (C-key).

Setting of the opening angle (Ao): During the first teach-in run, the drive mechanism moves to the open position (Ao) or up to the recommended open position stop piece, whichever event happens first, and the obtained result is memorized as opening angle. In the event of an excessively big difference between the actual opening angle and the displayed angle (in the diagnostic menu), this angle can be corrected (by means of dAxis). If the difference persists, the installation precision should be checked.

7.5 Closing sequence control

For bi-parting installations, the closing sequence control determines the order in which the door leaves are opened and closed. For the opening procedure, the earlier door leaf (Master leaf) is the first one to be opened, whereas for the closing procedure the delayed door leaf (Slave leaf) is the first one to be closed. This sequence ensures a correct overlapping of the door leaves.

Connections:

Opening elements (KE, OEO and OEI) connected to Master only act upon the Master (single leaf operation). Opening elements connected to Slave act upon the Master as well as on the Slave (biparting operation).

The safety elements SER and SES are connected to the respective drive mechanism.
An active EMCY element connected to the Master carries out the EMY-IN action configured on the Master (for both door leaves). An active EMCY element connected to the Slave switches the latter to the spring-powered operation.

An electric lock, which locks the Master leaf, is connected to the Master. Accordingly, an electric lock, which locks the Slave leaf, is connected on the Slave.

Function:

The first door leaf to be put in motion for the opening procedure is the Master; by means of DubleD, this leaf is configured as MastrA. Its partner is the Slave, which is configured as SlaveA by means of DubleD.

In the event of an existing connection, the Master is identified by a small black (m) and the Slave by a small black (s). If however there is no connection, this is indicated by a small white (m) respectively a small white (s).

The parameter settings for the Master and the Slaves are entirely independent from each other. It is thus possible to select a $\mathrm{Vo}=4$ for the Master and a Vo $=5$ for the Slave.

In order to guarantee a collision-free opening of both door leaves, the Slave leaf lets the Master leaf go ahead and initiate the opening. This time lag can be defined on the Slave by means of AoSeq. The default value of AoSeq is 20°, which is sufficient for most of the bi-parting installations. This means that the Slave only starts to open after the Master has exceeded an opening angle of 20°.
From then on, it is admissible for the Slave to catch up with and pass the Master if this should be required. This is done by configuring a higher Vo value for the Slave than the one for the Master. In cases where (due to an electric lock connected to the Master) TDelay of the Master is configured with a higher value than $0,0 \mathrm{~s}$, then the angle between the Slave and the Master is accordingly increased. To compensate this, AoSeq can be reduced in accordance.
An AoSeq value of 0° means that both door leaves will be simultaneously opened, i.e. that no opening delay is active.

The default value of AcSeq is 20° and thus sufficient for the majority of bi-parting installations. In cases where a mechanical closing sequence regulator is used with a mechanical closing delay of e.g. 90°, AcSeq must be programmed with a value of 90° or more.

AcSeq 20° means: The Master only starts closing as soon as the Slave has gained a lead of 20°. This advance guarantees that the Master will be closed in one go (without intermittence), which results in an optically pleasing closing motion.
The Master is allowed to overtake the Slave. 20° (value AcSeq) before reaching the closed position, the Master checks whether the Slave is already closed. If not, the Master will perform an intermediate stop in order to prevent a collision.

An active SES signal on a door leaf causes a safety stop of both door leaves. The same applies for the SER signal. An active SER signal causes both door leaves to reverse their motion.

A bi-parting installation can be operated in the single-leaf mode. An active EMCY signal on the Slave programs the closing sequence as a single-leaf configuration.
If only the EMCY signal on the Master is active, then this EMCY signal is applicable for both door leaves. In accordance with the action configured on the Master by means of EMY-IN, both door leaves carry out a CL-SPR (Close Spring), STOP, OPEN or CL-MOT (Close Motor).
If only the EMCY signal on the Slave is active, then the Slave carries out a CL-SPR, regardless of the action configured on the Slave by means of EMY-IN.
If both EMCY signals are active, then the Master performs its configured EMY-IN action and the Slave performs a CL-SPR. One exception of this rule is the Master in the EMY-IN configuration OPEN. In this case, both door leaves will be opened.

Procedure:

1. Connect both control units by means of the three-pole cable (terminal X109, CG/CL/CH).

Note:
The respective control and safety elements are connected to the corresponding drive mechanism
2. Take the Master drive mechanism into operation (see chapter 7).
3. For the Master drive mechanism: Select the operating mode OPEN.
4. Take the Slave drive mechanism into operation (see chapter 7).
5. Configuration of the Master drive mechanism:

- DubleD = MastA
- AcSeq = desired time lag of the closing angle.
\square Note:
In cases where a mechanical closing sequence regulator is used, start with a AcSeq of 90°; afterwards AcSeq can be reduced.

6. Configuration of the Slave drive mechanism:

- DubleD = SlaveA
- AoSeq = desired time lag of the opening angle.

Control:

1. Check the display of the Master control unit to see if a small black (m) is visible on the first level (connection existing). On the display of the Slave control unit, a small black (s) must be visible.
$\square \int$ Note:
A small white (m) resp. (s) indicates: missing connection.
2. Transmit a Key command to the Slave drive mechanism:

- The Master-drive mechanism is the first one to open, followed by the Slave drive mechanism (which is delayed by the value of the opening angle).
- In the open position the hold-open time expires on the display of the Slave control unit.
- The Slave drive mechanism is the first one to close, followed by the Master drive mechanism which is delayed by the value of the closing angle).

Parameters:

\int Note:
See chapter 7.

7.6 Interlock operation

To create an interlock, two consecutive doors are electrically connected (by means of CAN cable) and configured as an interlock unit during the commissioning.

7.6.1 Standard interlock (IL Type Safety)

Both doors need a separate opening command. The second door can only receive the opening commands if the first door is closed. If the second door receives the opening command before the first door is closed, this command can be intermediately stored by means of parameter ILCdRc. The second is then automatically opened as soon as the first door has been closed.

7.6.2 Hospital interlock (IL Type Hospital)

Basically, the hospital interlock functions in the same way as the standard interlock. However, only one opening command is required at the first door to open both doors. This happens in an automatic sequence.

As soon as the first door is closed, the opening command is forwarded to the second door. The second door thus opens without an additional opening command.

Warning:

For the event that someone should get entrapped in the interlock or wants to return through the first door, an emergency button must be installed (invalidation of the interlock function).

7.6.3 Netherland interlock (ILType NL)

Basically, the Netherland interlock functions in the same way as the hospital interlock. In addition, there is an adjustable override time. If this override time is exceeded, the second door can be opened even if the first door is not yet closed.

The override time is reset as soon as both doors have been closed again.

Procedure:

$\boxed{\square}$ Note:
Both installations must be plugged into resp. out of the same power supply.

1. Connect both control units by means of the three-pole cable (terminal X109, CG/CL/ CH).
2. Normal commissioning of both drive mechanisms.

3. Configuration of the drive mechanism for the exterior door (A):

- InterL = SideA

4. Configuration of the drive mechanism for the interior door (B):

- InterL = SideB

Control:

1. Check the display of the Master control unit to see if a small black (w) is visible on the first level (connection existing).

\int Note:

A small white (w) indicates: Missing connection.
2. Transmit a Key command to the exterior door (A):

- On the display a big black (W) appears (door is not closed).
- While the exterior door (A) is open, transmit a Key command to the interior door (B) (the latter must not be opened).

3. Transmit a Key command to the interior door (B):

- On the display a big black (W) appears (door is not closed).
- While the interior door (B) is in the open position, transmit a Key command to the exterior (A) (the latter must not be opened).
\int Note:
The parameters ILAuto, ILExit and ILNigt enable you to configure the operating modes in which the interlock system shall be active.

7.7 Adhesive labels

7.7.1 Service sticker

1. Attach the service sticker (outside) onto the degreased surface of the drive mechanism covering, at a place that is easily visible for the customer.
2. Stick the monthly sticker onto the service sticker, turning the monthly sticker until the checking date matches the arrow.
3. Using a water-proof felt tip pen, enter the year of the next checkup on the monthly sticker.

7.7.2 Arrow sticker

1. For transparent door leaves or door leaf surfaces:
Attach arrow sticker onto the degreased surface of the door leaves (inside, at eye level).

7.7.3 Glass sticker

1. Attach the glass sticker onto the degreased surface of the door leaves (outside at the bottom, near the closing edge).

7.7.4 Rating plate

1. Attach the rating plate (outside) onto the degreased surface of the drive mechanism covering, at a place that is easily visible.

7.8 Mount the drive mechanism covering

Material:

1	Covering	$0549-326$	Aluminium
1	Covering accessories	$0549-105$	Aluminium
1	Gilgen-Logo	$0610-503$	Set 0549-997/01
or			
1	Covering	$0549-311$	Stainless steel
1	Covering accessories	$0549-109$	Stainless steel
1	Gilgen-Logo	$0610-503$	Set 0549-997/01

Procedure:

1. Attach the Gilgen Logo:
a) Degrease the gluing surface on the covering.
b) Remove the white cover sheeting of the sticker (D).
c) Position the template (B) with the logo (C) in the lower right-hand corner of the covering and tightly press on the logo (C).
d) Remove the transparent protective foil (A).
e) Remove the template (B).
2. Mount the covering and the accessories as shown in the illustration.

8 SERVICE

A regular service (maintenance/checking) is absolutely indispensable in order to guarantee a safe operation and long lifetime of the installation. The service must be carried out by a expert, at least once a year, according to the following checklist.

This checkup work basically refers to visual and functional checking destined to evaluate the integrality, the condition and the efficiency of the components and safety devices (checking of the different elements as far as these are included in the installation).

Warning:

To avoid jeopardizing the safety of persons, any defective safety elements may not be disonnected in order to continue the operation of the installation!

Attention:

In order to guarantee the availability of the installation, any elements showing signs of wear must be replaced as a preventive measure!

Note:

- Every service which has been carried out shall be entered into the control booklet!
- The following service description refers to the basic components. The options are described in detail in chapter "Options".

Attention:

If the fastening screw (A) of the rotating arm is released, this screw must be secured upon tightening by means of Loctite 243, or else a new original screw needs to be inserted (see chapter: Spare parts).

8.1 Service for pedestrian doors

STOP

Warning:

Electrocution hazard! Before working on any live elements, pull out the mains plug as well as any existing plug of the emergency battery respectively switch off the main installation switch!

Installation				
General condition	x			
Free door movement (manually)	x			x
Door guides/Bottom guide rail	x	x		x
Door sealing joints	x	x		x
Sliding door leaves/Side panels/Protection leaves	x	x		
Coverings/hinge-type covers	x	x		
Tight fitting of screws and nuts	x			
Drive mechanism				
Drive mechanism	x	x		x
Transmission elements such as: Toothed belts, flat belts, cables, rods or chains	x	x		x
Running carriages with carrying pulleys and counter-pressure pulleys	x	x		x
Carrier rails	x	x	x	
Open/Closed position	x			x
Control elements				
All the existing control elements such as: Detectors, radars, key-operated switches, contact carpets, etc.	x	x		x
Control unit				
Electrical connections	x			
Functions related to installation	x			x
Program switch functions	x			
Emergency battery	x			
Escape way doors				
Emergency opening with mains failure ${ }^{1}$	x			
Opening speed 80% in 3 seconds ${ }^{1}$	x			x
Activation escape way detector $1,5 \mathrm{~m}$ in front of the door ${ }^{1}$	x			x
Minimum escape way width ${ }^{1}$	x			x
Maximum opening force at Break-Out leaf 220 N (1 m from floor)	x			x
Safety elements				
Reversing/stopping mechanism	x	x		x
Door locking/Manual unlocking mechanism	x	x	x	x
Rubber cable	x			x
Monitoring switch	x	x		x
Light barrier/Presence detector	x	x		x
Safety according EN16005				
Protections against impact				
Protections against crushing				
Protections against getting caught in				
Protections against shearing				
Protections against imprisoning				
Safety deficiencies must be communicated to the operator (in writing)!				
Miscellaneous				
Rating plate, arrow sticker, glass sticker, etc. existing?				
Control booklet existing and completed?				

1 Only for redundant drive mechanisms.
2 Gilgen cleans all the elements of the installation provided this is necessary for the function of the installation. A general cleaning of the installation is not planned.

8.2 Fundamental checking

Warning:
 Electrocution hazard! Before working on any live elements, pull out the mains plug respectively switch off the main installation switch!

1. Dismount the covering of the drive mechanism.
2. Check all the cable connections.
3. Normal rods:

Separate the rotating arm (A) from the rod arm (B) by loosen the screw (C).
4. Check the free running movement of the door leaf.

5. Check the bearings of the drive mechanism for increased noise level.
6. Normal rods:

Fasten the rotating arm (A), by means of the screw (C) to the rod arm $(B) \Rightarrow$ Tightening moment 5 Nm .
7. Mount the covering of the drive mechanism.

9 TROUBLESHOOTING

STOP

Warning:
Electric shock hazard! Before working on any live elements, pull out the mains plug respectively switch off the main installation switch!
If a malfunction occurs which might be detrimental to the safety of the users, and which cannot be eliminated without delay, the operator must be informed and if required the installation shall be taken out of operation. The installation must be repaired as soon as possible.

Note:
Every troubleshooting procedure which is carried out must be entered into the control booklet!

9.1 Malfunction with error-no.

The error is indicated on the display of the control unit.
Definition of the column "Reaction".

A The drive mechanism deactivates itself during a certain period.
Manual operating mode or stopping position.
F Fatal error
H Manual operating mode with re-starting attempt
W Warning

9.1.1 Drive mechanism

No.		Description	Cause	Elimination	Checking time	Reaction
E01	01	Encoder	Channel A lost	Check the encoder connection. Check the motor cable. The door is blocked. Check if a jumper has been inserted on X103.	During run	H
	02		Channel B lost			
	03		Channels A + B lost			
	04		Short-circuit A + B			
	05		Dysfunctions			
	06		Channels A + B interchanged		Prior to start-up	H
	07		No channel A			
	08		No channel B			
	09		No channel A + B			
	10		Short-circuit A + B			
	11		Malfunction		During testing	H
	12		Malfunction			
	13		Not connected		Permanent	H
	14		Current too high			
E02	01	Motor current	Current too high	Check the motor cable. Check if a jumper has been inserted on X103.	Prior to start-up	H
	02		Current too low Jumper missing			
E04	01	Reference switch	Detected in the open position	Check the connection and the switching point of the reference switch. The reference switch must be activated in the closed position (switching contact open).	Open position	F
	02		Not detected in the closed position		Prior to the first teach-in run	A
	03		Not detected in open position			
E05	00 20	Power limitation	Overload of the control. the maximum power is restricted.	Check/correct the friction of the door leaf and the pre-stressing of the closing spring	Permanent	A

9.1.2 Operating

No.		Description Fullteach required	Cause	Elimination	Checking time	Reaction
E10	01		Parameter Ao, Rod or dAxis changed	Carry out a teach	Upon changing the drive mechanism configuration	H
	02		Minimum opening angle has not been reached	Check the locking/electric lock. Carry out a Factory Reset.	During the Teach	H
	03		Adjusted opening angle Ao has not been reached during the Teach	Check/correct dAxis. Carry out a Teach.		
E11	01	Halfteach required (Opening)	Parameter Vo changed	Carry out a complete and unhindered opening cycle	Upon changing the motional parameters	W
	02	Halfteach required (Closing)	Parameter Vc or FSlam changed	Carry out a complete and unhindered closing cycle		
E12	03	Excessively high current consumption during the Teach in the open position (>5 A)	Drive unit pushes against the open position stop piece or an obstacle. The spring tension is possibly too high.	Check/correct dAxis. Reduce the opening angle Ao. Reduce the spring tension. Carry out a Factory Reset.	Open position Teach 3 (E11)	F
E13	01	Spring tension test pending	Teach not completed	Complete spring tension test by means of opening command	During the Teach	W
E14	01	Locking/electric lock	The door leaf got caught in the locking/electric lock. Feedback: the electric lock ELFb does not switch.	Check the function of the locking/ electric lock. Feedback: check the electric lock ELFb.	When opening from a closed position	H
	02		The interlocking force Fch has not been programmed	Program/increase the interlocking force Fch	At the end of the teach-in procedure	W
E15	01	Obstacle in opening direction	Too many successive obstacles have occured	Examine the installation. Remove the obstacle. Move the door leaf to the target position.	Permanent	$\mathrm{H}, \mathrm{~A}$ Restart after 60 s
	02	Obstacle in closing direction				

9.1.3 Safety elements

No.		Description	Cause	Elimination	Checking time	Reaction
E18	01	EMY Test	Malfunction EMY input	Check the jumper EMY. Check the cabling EMY.	Permanent	H
E20	01	SER Test	SER Test signal unsuccessful	SER short-circuit to the earth. Check the cabling of the sensor or the jumper.	Prior to closing	A
	02		SER too slow	SER reacts too slowly. Check the cabling of the sensor. Check for polarity reversal/test signal.		
E21	01	SES Test	SES Test signal unsuccessful	SES short-circuit to the earth. Check the cabling of the sensor or the jumper.	Prior to opening	A
	02		SES too slow	SES reacts too slowly. Check the cabling of the sensor. Check for polarity reversal/test signal.		
E22	01	EMY Test	EMY input on 24 V	Check the jumper EMY. Check the cabling EMY.	Permanent	H
	02		Malfunction EMY input			A

9.1.4 Feeding

No.		Description	Cause	Elimination	Checking time	Reaction
E30	01	30 V Error	30 V too low	Mains failure, overload motor. Check the feed-in. Replace the hardware.	Permanent	A
	02		30 V too high			
	03		Error upon switching-on			
E31	01	24 V General	Error upon switching-on	Overload 24 VDC onto terminals X101, X104, X108, X110, X113	Permanent	A Restart after 10 s
	02		Over- resp. under-voltage			
E32	01	24 V Safety	Over- resp. under-voltage	Overload, short-circuit 24 VDC onto terminals X108 or X110		
E33	01	24 V E-Lock	Error: Over- resp. under-voltage	Overload, short-circuit 24 VDC onto terminal X113		
	02		Premonition: Over- resp. under-voltage			
E34	01	24 V CAN	Over- resp. under-voltage	Overload, short-circuit external power supply CAN		

9.1.5 System

No.		Description	Cause	Elimination	Checking time	Reaction
E50	$01 \ldots . .99$	System error	Unexpected hardware or software event	Switch the drive mechanism off/on. Carry out a Factory Reset, carry out a Software Update, inform the manufacturer.	Permanent	W or H or F
E51	01...99					
E52	$01 \ldots 99$					
E53	$01 . . .99$					

9.1.6 Options

No.		Description	Cause	Elimination	Checking time	Reaction
E60	00	Relay PCB 0	Option PCB has been removed, its address changed or become defective	Check if the option is provided. If defective: Replace or remove from the configuration. Note: Deleting of error $60 \Rightarrow$ see chapter 13.5.1.	Permanent	W
	10	Relay PCB 1			Permanent	W
	20	Relay PCB			Permanent	W
	30	Fire-protection PCB			Permanent	A

9.1.7 Closing sequence / Interlock function

No.	Description	Cause	Elimination	Checking time	Reaction	
E70	xx	Bus setting	Address xx existing twice	Correctly define the role of the closing sequence or the interlock function	Permanent	W
E71	01	Connection	No connection	Connect the terminals, check or replace the cable. Check if all the participants are switched on.	Permanent	W

9.1.8 Internal safety test

No.		Description	Cause	Elimination	Checking time	Reaction
E80	01	The internal safety test has failed	Malfunction	Switch the drive mechanism off/on	Permanent	W
	02					F
E82	01		Malfunction	Switch the drive mechanism off/on	After start-up	W
	02					F
E83	01		Motor current test failed	Switch the drive mechanism off/on	After start-up and thereafter every 24 h	W
	02					F
E84	01		Cushioning test failed	Switch the drive mechanism off/on	After start-up and thereafter every 24 h	W
	02					F
E86	02	Spring tension test failed	Closing speed too high (by means of the spring force)	Check/reduce spring tension. Check/adjust door leaf width and door leaf weight.	While closing the door leaf during the Teach	F
E87	01	Cushioning test failed once	Closing speed too high (by means of the spring force)	Test is repeated automatically after 2 hours	After start-up and thereafter every 24 h	W
E88	01	Motor cutoff relay test failed	Malfunction	Check free running movement of door leaf. Check/increase spring tension.	While closing the door leaf during the Teach, after startup and thereafter every 24 h	F

9.2 Malfunction without error-no.

In some cases, it will be technically impossible to display an "irregular functioning" of the installation by a definite error number. An alleged error may by all means also be due to "correct" causes. For this reason the list shown hereafter has been established, which contains the probable or already encountered irregular functioning, their possible causes as well as the corrective action (error elimination) to be taken.

Malfunction	Analysis	Possible causes	Remedy
Drive unit fails to react: - No automatic opening. - No reaction on the control elements (side cover/D-Bedix).	- LED 5 V (green) on the control is not lighted.	Power supply voltage is missing.	- Measure the mains supply voltage, check its cabling and eliminate any detected deficiencies.
Drive unit fails to open.	- LED SE (safety element, yellow) is lit. - Determine the active safety element via the diagnostic level.	One or more safety elements are active or incorrectly cabled.	- Remove the obstacle. - Check the cabling between the safety element and the control unit, and eliminate any detected deficiencies. - Replace the safety element.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) reacts to the opening element. - Determine the opening element via the diagnostic level.	Depending on the enabled operating mode, the opening commands (inside/ outside, etc.) are ignored.	- Change the operating mode. - Correct the cabling of the opening elements.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) is not lighted despite the active opening element.	The opening ocmmand is not evaluated.	- Check the cabling between the opening element and the control unit and eliminate any detected deficiencies. - Replace the opening element.
Drive unit fails to close.	- LED SE (safety element, yellow) is lit.	One or more safety elements are active or incorrectly cabled.	- Remove the obstacle. - Check the cabling between the safety element and the control unit and eliminate any detected deficiencies. - Replace the safety element.
	- LED SE (safety element, yellow) is not lighted. - LED OE (opening command, blue) is lit.	An opening command is pending.	- Check the cabling between the opening element and the control unit and eliminate any detected deficiencies. - Replace the opening element.
	- Check the operating mode.	The operating mode OPEN is active.	- Change the operating mode.
The operating mode cannot be changed.	- The program selection switch in the side cover does not work.	The plug is not plugged in.	- Check the cabling and eliminate any detected deficiencies.
	- The operating mode symbol on the display is underlined.	The operating mode is overridden via connection terminal X115.	- Change the operating mode by means of the external program selector switch. - Correct the cabling of the external program selector switch.

9.3 Software update via USB

A software update of the FD 10 control unit can be easily and rapidly achieved by means of an USB memory stick.

Note:
Not all the USB memory sticks can be used. We thus recommend a previous testing of their function together with the FD 10.

9.3.1 Preparation

The USB stick must contain a folder FD10.
The file name of the application must specify FD10.
The name of the file extension must be gds.
\Rightarrow The stick shall only contain one single FD10 folder.
\Rightarrow There must be only one single file in the FD10 folder.

FD10

$\leftrightarrow \cap$ Computer ~ Wechseldatenträger (E : $)$ FD10
Organisieren \quad Freigeben für \bullet Neuer Ordner

FD10

9.3.2 Procedure

1. FD 10 plug in the mains plug.
2. Plug the USB stick into the control unit \Rightarrow socket X111.
3. Go to UPDATE SW \Rightarrow in the menu and press the joystick once.
4. When "update last?" appears on the display \Rightarrow press the joystick once.
update last?
5. The software download takes approx. 1 minute \Rightarrow Watch the LED display on the ocntrol unit.
The drive mechanism will switch off automatically while the download is taking place. The drive mechanism will reactivate automatically once the download is complete.
6. Remove the memory stick USB.

9.3.3. LED display on the control

The display of the functions is ensured via three LEDs on the control PCB:

SOK	Green	USB-Loader started
OE	Blue	Activity in progress (delete/write memory)
SOK + OE	Green/Blue	Download completed \Rightarrow remove the stick
SE	Yellow	Error

9.3.4 Possible errors

- Incorrectly formatted USB stick
\Rightarrow this stick must be FAT or FAT 32 formatted (File Allocation Table from Microsoft).
- Several drives existing on the USB stick
\Rightarrow only one drive is legible.
- Invalid file
\Rightarrow Not encrypted, damaged, FD10 missing in the file name, gds missing in the file extension.

Control PCB

10 SHUT-DOWN

No particular measures need to be taken for de-commissioning the installation.
If the swing door drive mechanism will not be used during at least 1 month, it is recommended to pull out the mains plug.

For taking the installation back into operation, all you have to do is to plug in the mains cable and select the operating mode.

Attention:
If the installation is re-commissioned at low temperatures, it must be switched on $1 . . .2$ hours prior to the actual teach-in procedure (so that the operating temperature can be reached).

11 DISPOSAL OF THE INSTALLATION

An ecologically acceptable disposal of the installation is ensured if the different materials are separated and recycled. No particular measures are required for the protection of the environment. However, the relevant legal prescriptions applicable for the installation site have to be complied with!

12 SPARE PARTS

Article No.	Designation	Remark
0549-118	Drive module complete	
0549-104	Fixing set	
0549-206	Relay PCB	Option
0549-119	Control PCB	
0635-142	D-BEDIX	Option
0548-133	Service D-BEDIX	for fitter
0549-113	Drive mechanism covering complete	Aluminium
0549-105	Covering accessories	Aluminium
0549-114	Drive mechanism covering complete	Stainless steel
0549-109	Covering accessories	Stainless steel
0549-112	Side cover complete incl. program selector switch	
0549-103	Side cover	
0549-500	Rating plate	
0549-204	Flexible cable routing	Option
0549-322	Protective plug	
0548-163	Normal rods RS	
0548-163/02	Normal rods RS for leaf mounting incl. rotating arm 400 mm	
0548-164	Sliding rods RG	
0548-164/02	Sliding rods RG for leaf mounting incl. sliding rail 800 mm	
0549-115	Connection plate for wooden door leaf normal rods	Option
0548-190	Axle extension RG/RS + 12 mm	incl. Tuflok screw
0548-191	Axle extension RG/RS + 20 mm	incl. Tuflok screw
0548-192	Axle extension RG/RS + 30 mm	incl. Tuflok screw
0548-193	Axle extension RG/RS + 40 mm	incl. Tuflok screw
0548-194	Axle extension RG/RS + 50 mm	incl. Tuflok screw

13 OPTIONS

13.1 D-BEDIX

The different operating modes can be directly enabled by means of the D-BEDIX. In addition, it provides easy programming of the most important door settings.
The operating modes, menu settings as well as possible errors are displayed in a clearly arranged synopsis.
The D-BEDIX is connected to the control unit FD 10 via a screened two-core connection cable (e.g. U72M or EIB-Y(St)Y, max. length 50 m). Only one D-BEDIX can be connected per door installation.

13.1.1 Keys

C	C-key (Cancel) - Exit the menu - Invalidate entry.
(OR	OK-key - Confirm the selection - Confirm the entry.
	Arrow keys - Navigate within the menus - Short simultaneous actuation of both keys = acces to the menu level.

13.1.2 Symbols

$\left.$| Operating mode symbols |
| :--- |
| - Show the possible operating modes |
| (see chapter: Operating modes). |\quad| Selection frame (active and preselected operating mode) |
| :--- |
| - Shows what has been presently selected. | \right\rvert\, | Selection frame (active operating mode) |
| :--- |
| - Shows what has been presently selected but is still inhibited. A control |
| element with higher priority (e.g. key-operated switch) determines the |
| operating mode. |

13.1.3 Operating modes

With the D-BEDIX, the following operating modes can be selected by means of the corresponding symbols:
AUTOMATIC

Automatic operation. The installation can be locked. | NIGHT |
| :--- |
| The installation is locked ${ }^{1}$. As opening commands, only the key-operated impulse |
| switch is accepted. |
| The delayed switchover to the operating mode NIGHT can be activated by means |
| of parameter TdNigt. Function: If the program selector switch is changed to the |
| operating mode NIGHT from any random operating mode, the internal radar will still |
| remain active during the programmed time TdNigt (EXIT). |

${ }^{1}$ Provided that the locking mechanism (optional) is installed.
${ }^{2}$ Each operating mode can be locked (this is configurable).

13.1.4 Display of the door position

The following door positions are represented onthe D-BEDIX display:

$<$ REF? $>$	Waits for reference switch
$<$?? $>$	Unknown
$><$	Closed
$>\# \#<$	Closed and locked
$\ll \quad \gg$	Opening
$<\quad>$	Open
$\gg \quad \ll$	Closing
$==$	Stopping

13.1.5 Menu level

Short and simultaneous actuation of both arrow keys (=access to the menu level).
Select the desired menu item bymeans of the arrow key.
Confirm by means of the OK key.

Display	Description
PARAMETER	Setting the motional parameters *
CONFIG	Setting the functionalities *
DOUBLE DOOR	Setting the closing sequence and interlock function *
DIAGNOSTICS	Diagnostic tool
ERROR ACTIVE	Active pending errors
ERROR HISTORY	Formerly active errors
REINIT	Carry out a re-initialization *
BLOCK/UNBLOC	Lock/unlock keys
TEACH	Initiate a teach-in procedure \Rightarrow make sure that the door leaf is completely closed.

* password protected
$\square \int$ Note:
The detailed settings are described in chapter 7.

13.1.6 Setting examples

Changing the operating mode

Select the desired symbol by means of the arrow key (symbol starts flashing).
Confirm with the OK key (frame/bar switch over).

Preselecting the operating mode

An overriding switch is active and determines the operating mode (only the selection frame is visible, the bar underlines the preselected operating mode). Now you can select the operating mode you want to be active upon cancellation of the overriding switch:
Select the desired symbol by means of the arrow key (symbol starts flashing). Confirm with the OK key (bar switches over).

Enabling the keylock

Short simultaneous actuation of both arrow keys (= access to the menu level). By means of the arrow key, select BLOCK.
Confirm with the C-key and the right-hand arrow key.

Temporarily disabling the keylock (60 s)
Short simultaneous actuation of the C-key and the right-hand arrow key.

Disabling the keylock

Short simultaneous actuation of the C-key and the right-hand arrow key.
Short simultaneous actuation of the arrow keys (= access to the menu level).
By means of the arrow key, select UNBLOC.
Confirm with the C-key and the right-hand arrow key.

Parameters (hold-open timeday)

Short simultaneous actuation of the arrow keys (= access to the menu level).
By means of the arrow key, select TOEx.
Confirm with the OK key.
By means of the arrow key, change the value.
Confirm with the OK key.

Teach

Completely close the door leaf.
Short simultaneous actuation of the arrow keys (= access to the menu level).
By means of the arrow key, select Teach.
Confirm with the OK key.

13.1.7 Error display

In the event of an error, the display shows (alternating with the door position status) the presently active error number (e.g. E20/01).
Error list: see chapter Troubleshooting.
This sequence will be repeated until the error has been eliminated.

13.2 KOMBI-D-BEDIX

In addition to the functions of the D-BEDIX, the KOMBI-D-BEDIX contains a key-operated switch (round or profile cylinder) with the following function:

Lockout of the KOMBI-D-BEDIX against unauthorized use.

If this lockout is enabled, all the keys are shortly lit (as a confirmation of the lockout).

13.3 Connection plate for wooden door leaf (normal rods)

The connection plate is mounted below the door connection angle of the normal rod assembly and screwed down by means of countersunk chipboard screws 5×30.

13.4 Continuous covering

For bi-parting installations, the two drive mechanisms can be optically connected by inserting an intermediate covering piece.

Set with drive mechanism covering $0,78 \mathrm{~m}$ Alu	$0549-210$	or
Set with drive mechanism covering $0,78 \mathrm{~m}$ Inox	$0549-211$	
1	Drive mechanism covering Alu natural anodised E6/EV1	$0549-343$
	Drive mechanism covering Inox	$0549-344$
1	Intermediate profile Aluminium untreated $0,78 \mathrm{~m}$	$0549-346$
1	Fixing set	$0549-210 / 90$

Normal rod
Sliding rod pulling function

Sliding rod pushing function

Lintel depth (mm)	B (mm)
$-30 \ldots+50$	60
$51 \ldots 80$	70
$81 \ldots 120$	80
$121 \ldots 150$	90

13.5 Optional PCBs

All the optional PCBs are plugged into the control unit via a universal connector. A maximum number of two optional PCBs can be combined.

\triangle
Attention:
All optional PCBs must only be plugged into/removed from the control unit after the dive unit has been disconnected from the power supply source!

13.5.1 Relay PCB

The relay PCB (blue) offers four outputs to be freely used by the customer.

Commissioning:

1. Addressing of the relay PCB by means of DIPSwitch:
DIP-Switch Addr0 or Addr1.
2. Switch-on the main installation swtich on
 the drive mechanism \Rightarrow the relay PCB is automatically identified.
The identified relay PCB is displayed as follows in the diagnostic menu:
RO Addro
R1 Addr1
FP Fire protection PCB
RP Radio PCB
$+\quad$ identified and ready for operation

- neither identified nor registered
e defective or error

x removed

3. Enabling of the desired function per relay: under Settings \Rightarrow Configuration RCO.1 up to RC0.4 (for Addr 0) and RC1.1 up to RC1.4 (for Addr 1).

Remove the relay PCB:

1. Switch-off the main installation swtich on the drive mechanism.
2. Remove the relay PCB.
3. Switch-on the main installation swtich on the drive mechanism.

Display:

$$
\begin{aligned}
& \mathrm{E} 60 / 00 \Rightarrow \text { Addr0 } \\
& \mathrm{E} 60 / 10 \Rightarrow \text { Addr1 }
\end{aligned}
$$

4. Select menu:

Joystick ROxR1x...

5. In the rest position, press in the joystick: Reset OK ? \Rightarrow The relay PCB is deleted from the configuration.

13.6 Safety sensors

Safety sensors are fitted to automated swing doors to monitor and protect their pivoting area. They are fitted to both sides of the door leaf. This guarantees maximum protection during both opening and closing of the door.
Basically, the instructions of the sensor manufacturer must always be observed when mounting the safety sensors! If the connecting wires of the safety sensors are not tin-plated, end sleeves must be used for the strands!

Function

In opening direction:
Movement of the door leaf stops whenever the sensor detects an obstacle. Wall recognition of the safety sensor can be suppressed (adjusted).

In closing direction:
The safety sensor reverses the drive mechanism, and the closing door leaf opens once more.

13.6.1 LZR-FLATSCAN

In the event of swing doors, the FLATSCAN is mounted on the moving leaf, on the upper leaf corners (as close as possible to the secondary closing edge). The FLATSCAN can only be used in pairs! Master and Slave are connected among each other (see wiring diagram in the appendix). If a door radar is mounted directly above the FLATSCAN, it is compulsory to mount the weather canopy (for screening against radar mocrowaves).

14 APPENDIX

The following documents are added as an appendix to this instructions:
Wiring diagram
E4-0141-724

DOOR SYSTEMS

Drive mechanism for swing door FD 10

- Overview
- Options
- Variants

Standard diagram no. E4-0141-724 a

